Abstract
AbstractCircadian rhythm is involved in the development and diseases of many tissues. However, as an essential environmental regulating factor, its effect on amelogenesis has not been fully elucidated. The present study aims to investigate the correlation between circadian rhythm and ameloblast differentiation and to explore the mechanism by which circadian genes regulate ameloblast differentiation. Circadian disruption models were constructed in mice for in vivo experiments. An ameloblast-lineage cell (ALC) line was used for in vitro studies. As essential molecules of the circadian system, Bmal1 and Per2 exhibited circadian expression in ALCs. Circadian disruption mice showed reduced amelogenin (AMELX) expression and enamel matrix secretion and downregulated expression of BMAL1, PER2, PPARγ, phosphorylated AKT1 and β-catenin, cytokeratin-14 and F-actin in ameloblasts. According to previous findings and our study, BMAL1 positively regulated PER2. Therefore, the present study focused on PER2-mediated ameloblast differentiation and enamel formation. Per2 knockdown decreased the expression of AMELX, PPARγ, phosphorylated AKT1 and β-catenin, promoted nuclear β-catenin accumulation, inhibited mineralization and altered the subcellular localization of E-cadherin in ALCs. Overexpression of PPARγ partially reversed the above results in Per2-knockdown ALCs. Furthermore, in in vivo experiments, the length of incisor eruption was significantly decreased in the circadian disturbance group compared to that in the control group, which was rescued by using a PPARγ agonist in circadian disturbance mice. In conclusion, through regulation of the PPARγ/AKT1/β-catenin signalling axis, PER2 played roles in amelogenin expression, cell junctions and arrangement, enamel matrix secretion and mineralization during ameloblast differentiation, which exert effects on enamel formation.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献