Abstract
AbstractFood security is under increased pressure due to the ever-growing world population. To tackle this, alternative protein sources need to be evaluated for nutritional value, which requires information on digesta peptide composition in comparison to established protein sources and coupling to biological parameters. Here, a combined experimental and computational approach is presented, which compared seventeen protein sources with cow’s whey protein concentrate (WPC) as the benchmark. In vitro digestion of proteins was followed by proteomics analysis and statistical model-based clustering. Information on digesta peptide composition resulted in 3 cluster groups, primarily driven by the peptide overlap with the benchmark protein WPC. Functional protein data was then incorporated in the computational model after evaluating the effects of eighteen protein digests on intestinal barrier integrity, viability, brush border enzyme activity, and immune parameters using a bioengineered intestine as microphysiological gut system. This resulted in 6 cluster groups. Biological clustering was driven by viability, brush border enzyme activity, and significant differences in immune parameters. Finally, a combination of proteomic and biological efficacy data resulted in 5 clusters groups, driven by a combination of digesta peptide composition and biological effects. The key finding of our holistic approach is that protein source (animal, plant or alternative derived) is not a driving force behind the delivery of bioactive peptides and their biological efficacy.
Funder
TopSector Agri & Food:15269
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献