Activating transcription factor-2 supports the antioxidant capacity and ability of human mesenchymal stem cells to prevent asthmatic airway inflammation

Author:

Ju Hyein,Yun HongDuck,Kim YongHwan,Nam Yun Ji,Lee Seungun,Lee Jinwon,Jeong Seon Min,Heo Jinbeom,Kwon Hyungu,Cho You SookORCID,Jeong Gowun,Ryu Chae-Min,Shin Dong-MyungORCID

Abstract

AbstractGlutathione (GSH), an abundant nonprotein thiol antioxidant, participates in several biological processes and determines the functionality of stem cells. A detailed understanding of the molecular network mediating GSH dynamics is still lacking. Here, we show that activating transcription factor-2 (ATF2), a cAMP-response element binding protein (CREB), plays a crucial role in maintaining the level and activity of GSH in human mesenchymal stem cells (MSCs) by crosstalking with nuclear factor erythroid-2 like-2 (NRF2), a well-known master regulator of cellular redox homeostasis. Priming with ascorbic acid 2-glucoside (AA2G), a stable vitamin C derivative, increased the expression and activity of ATF2 in MSCs derived from human embryonic stem cells and umbilical cord. Subsequently, activated ATF2 crosstalked with the CREB1-NRF2 pathway to preserve the GSH dynamics of MSCs through the induction of genes involved in GSH synthesis (GCLC and GCLM) and redox cycling (GSR and PRDX1). Accordingly, shRNA-mediated silencing of ATF2 significantly impaired the self-renewal, migratory, proangiogenic, and anti-inflammatory capacities of MSCs, and these defects were rescued by supplementation of the cells with GSH. In addition, silencing ATF2 attenuated the ability of MSCs to alleviate airway inflammatory responses in an ovalbumin-induced mouse model of allergic asthma. Consistently, activation of ATF2 by overexpression or the AA2G-based priming procedure enhanced the core functions of MSCs, improving the in vivo therapeutic efficacy of MSCs for treating asthma. Collectively, our findings suggest that ATF2 is a novel modulator of GSH dynamics that determines the core functionality and therapeutic potency of MSCs used to treat allergic asthma.

Funder

National Research Foundation of Korea

Ministry of Health and Welfare

Ministry of Science, ICT and Future Planning

Ministry of Education

Asan Institute for Life Sciences, Asan Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3