Phospholipase C-β3 is dispensable for vascular constriction but indispensable for vascular hyperplasia

Author:

Jin Seo Yeon,Ha Jung Min,Kum Hye Jin,Ma Ji Soo,Ha Hong Koo,Song Sang Heon,Yang Yong Ryoul,Lee HoORCID,Bae Yoon Soo,Yamamoto MasahiroORCID,Suh Pann-Ghill,Bae Sun SikORCID

Abstract

AbstractAngiotensin II (AngII) induces the contraction and proliferation of vascular smooth muscle cells (VSMCs). AngII activates phospholipase C-β (PLC-β), thereby inducing Ca2+ mobilization as well as the production of reactive oxygen species (ROS). Since contraction is a unique property of contractile VSMCs, signaling cascades related to the proliferation of VSMCs may differ. However, the specific molecular mechanism that controls the contraction or proliferation of VSMCs remains unclear. AngII-induced ROS production, migration, and proliferation were suppressed by inhibiting PLC-β3, inositol trisphosphate (IP3) receptor, and NOX or by silencing PLC-β3 or NOX1 but not by NOX4. However, pharmacological inhibition or silencing of PLC-β3 or NOX did not affect AngII-induced VSMC contraction. Furthermore, the AngII-dependent constriction of mesenteric arteries isolated from PLC-β3∆SMC, NOX1−/−, NOX4−/− and normal control mice was similar. AngII-induced VSMC contraction and mesenteric artery constriction were blocked by inhibiting the L-type calcium channel Rho-associated kinase 2 (ROCK2) or myosin light chain kinase (MLCK). The activation of ROCK2 and MLCK was significantly induced in PLC-β3∆SMC mice, whereas the depletion of Ca2+ in the extracellular medium suppressed the AngII-induced activation of ROCK2, MLCK, and vasoconstriction. AngII-induced hypertension was significantly induced in NOX1−/− and PLC-β3∆SMC mice, whereas LCCA ligation-induced neointima formation was significantly suppressed in NOX1−/− and PLC-β3∆SMC mice. These results suggest that PLC-β3 is essential for vascular hyperplasia through NOX1-mediated ROS production but is nonessential for vascular constriction or blood pressure regulation.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3