Establishment of a humanized animal model of systemic sclerosis in which T helper-17 cells from patients with systemic sclerosis infiltrate and cause fibrosis in the lungs and skin

Author:

Park Min-Jung,Park YoungjaeORCID,Choi Jeong Won,Baek Jin-Ah,Jeong Ha Yeon,Na Hyun Sik,Moon Young-Mee,Cho Mi-LaORCID,Park Sung-Hwan

Abstract

AbstractSystemic sclerosis (SSc) is a chronic autoimmune disease characterized by inflammation, microangiopathy, and progressive fibrosis in the skin and internal organs. To evaluate the pathophysiologic mechanisms and efficacies of potential therapeutics for SSc, a preclinical model recapitulating the disease phenotypes is needed. Here, we introduce a novel animal model for SSc using immunodeficient mice injected with peripheral blood mononuclear cells (PBMCs) from SSc patients. Human PBMCs acquired from SSc patients and healthy controls were transferred into NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice with concurrent bleomycin injection. Blood, skin, and lung tissues were acquired and analyzed after PBMC engraftment. In addition, we investigated whether the humanized murine model could be used to assess the efficacy of potential therapeutics for SSc. Human PBMCs from SSc patients and healthy controls were engrafted into the blood, skin, and lung tissues of NSG mice. Histological analysis of affected tissues from mice treated with SSc PBMCs (SSc hu-mice) demonstrated substantial inflammation, fibrosis and vasculopathy with human immune cell infiltration and increased expression of IL-17, TGF-β, CCL2, CCL3, and CXCL9. The proportions of circulating and tissue-infiltrating T helper 17 (Th17) cells were elevated in SSc hu-mice. These cells showed increased expression of CXCR3 and phosphorylated STAT3. SSc hu-mice treated with rebamipide and other potential Th17-cell-modulating drugs presented significantly reduced tissue fibrosis. Mice injected with patient-derived PBMCs show promise as an animal model of SSc.

Funder

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3