RGS2 promotes estradiol biosynthesis by trophoblasts during human pregnancy

Author:

Tang Chao,Jin Meiyuan,Ma Bingbing,Cao Bin,Lin Chao,Xu Shouying,Li Jiayong,Xu Qiang

Abstract

AbstractProduction of estradiol (E2) by the placenta during human pregnancy ensures successful maintenance of placental development and fetal growth by stimulating trophoblast proliferation and the differentiation of cytotrophoblasts into syncytiotrophoblasts. Decreased levels of E2 are closely associated with obstetrical diseases such as preeclampsia (PE) in the clinic. However, the mechanisms underlying the inhibition of placental E2 biosynthesis remain poorly understood. Here, we report that regulator of G-protein signaling 2 (RGS2) affects E2 levels by regulating aromatase, a rate-limiting enzyme for E2 biosynthesis, by using human trophoblast-derived JEG-3 cells and human placental villus tissues. RGS2 enhanced the protein degradation of the transcription factor heart and neural crest derivatives expressed 1 (HAND1) by suppressing ubiquitin-specific protease 14 (USP14)-mediated deubiquitination of HAND1, resulting in the restoration of HAND1-induced trans-inactivation of the aromatase gene and subsequent increases in E2 levels. However, aromatase bound to RGS2 and repressed RGS2 GTPase activating protein (GAP) activity. Moreover, we observed a positive correlation between RGS2 and aromatase expression in clinical normal and preeclamptic placental tissues. Our results uncover a hitherto uncharacterized role of the RGS2-aromatase axis in the regulation of E2 production by human placental trophoblasts, which may pinpoint the molecular pathogenesis and highlight potential biomarkers for related obstetrical diseases.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3