Targeted Overexpression of Endothelin-1 in Astrocytes Leads to More Severe Cytotoxic Brain Edema and Higher Mortality

Author:

Yeung Patrick Ka Kit1,Lo Amy Cheuk Yin12,Leung Justin Wai Chung1,Chung Stephen Sum Man23,Chung Sookja Kim12

Affiliation:

1. Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 852, Hong Kong, China

2. Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, Hong Kong, China

3. Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Hong Kong, China

Abstract

Transgenic mice overexpressing endothelin-1 (ET-1) in astrocytes (GET-1) displayed more severe brain edema and neurologic dysfunction after experimental ischemic stroke. However, it was not clear whether astrocytic ET-1 contributed to cytotoxic or vasogenic edema associated with stroke. In this study, the role of astrocytic ET-1 in cytotoxic edema and brain injury was investigated. Upon acute water intoxication, the GET-1 mice had a lower survival rate and more severe neurologic deficits. Such an exacerbated condition in the GET-1 mice may be a result of a significant increase in cerebral water content and increased expression of the water channel protein, aquaporin 4 (AQP-4). The GET-1 mice treated with OPC-31260, a nonpeptide arginine vasopressin V2 receptor antagonist, were alleviated from the cerebral water accumulation and neurologic deficit during the early time period after water intoxication. In addition, a significant reduction of AQP-4 expression was observed in astrocytic end-feet AQP-4 in the hippocampus of the GET-1 mice treated with OPC-31260. Therefore, ET-1-induced AQP-4 expression and cerebral water accumulation are the key factors in brain edema associated with acute water intoxication. The V2 receptor antagonist, OPC-31260, may be one of the effective drugs for the early treatment of ET-1-induced cytotoxic edema and brain injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3