Leptin Augments Cerebral Hemodynamic Reserve after Three-Vessel Occlusion: Distinct Effects on Cerebrovascular Tone and Proliferation in a Nonlethal Model of Hypoperfused Rat Brain

Author:

Busch Hans-Joerg1,Schirmer Stephan H23,Jost Marco1,van Stijn Sylvia4,Peters Stephan L M4,Piek Jan J2,Bode Christoph1,Buschmann Ivo R5,Mies Guenter6

Affiliation:

1. Department of Cardiology and Angiology, Albert Ludwigs University, Freiburg, Germany

2. Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands

3. Department of Cardiology, Angiology and Intensive Care Medicine, Saarland University, Homburg/Saar, Germany

4. Department of Pharmacology & Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands

5. Research Group for Experimental and Clinical Arteriogenesis, Berlin, Germany

6. Max Planck Institute for Neurological Research, Cologne, Germany

Abstract

The adipocytokine leptin has distinct functions regulating vascular tone, inflammation, and collateral artery growth. Arteriogenesis is an inflammatory process and provides a mechanism to overcome the effects of vascular obstruction. We, therefore, tested the effects of leptin in hypoperfused rat brain (three-vessel occlusion). Systemic leptin administration for 1 week after occlusion surgery increased cerebral hemodynamic reserve similar to granulocyte–macrophage colony-stimulating factor (GM-CSF), as indicated by improved CO2 reactivity (vehicle 0.53%±0.26% versus leptin 1.05%±0.6% per mm Hg arterial pCO2, P<0.05). Infusion of microspheres under maximal vasodilation failed to show a positive effect of leptin on cerebral perfusion (vehicle 64.9%±4.5% versus leptin 66.3%±7.0%, occluded/nonoccluded hemisphere). Acute treatment with GM-CSF led to a significant increased CO2 reactivity and cerebral perfusion (79.2%±8.1% versus 64.9%±4.5%, P<0.05). Vasoconstrictive response of isolated rat carotid artery rings, after phenylephrine was attenuated at 24 hours following preincubation with leptin, was unaffected by removal of endothelium but abrogated by coculture with N-(omega)-nitro-l-arginine methylester, pointing toward an inducible nitric oxide synthase-mediated mechanism. In chronic cerebral hypoperfusion, acute leptin treatment restored the hemodynamic reserve of the cerebral vasculature through its effects on vascular tone, while leaving vascular outward remodeling unaffected. Our results, for the first time, reveal a protective role of leptin on vascular function in hemodynamically compromised brain tissue.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3