MR Derived Volumetric Flow Rate Waveforms at Locations within the Common Carotid, Internal Carotid, and Basilar Arteries

Author:

Gwilliam Matthew N12,Hoggard Nigel2,Capener David2,Singh Pankaj3,Marzo Alberto3,Verma Prashant K1,Wilkinson Iain D2

Affiliation:

1. Medical Physics and Clinical Engineering, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

2. Academic Unit of Radiology, Department of Human Metabolism, University of Sheffield, Sheffield, UK

3. Academic Unit of Medical Physics, Department of Cardiovascular Sciences, University of Sheffield, Sheffield, UK

Abstract

The volumetric flow rate (VFR) waveform over the cardiac cycle in the cerebral vasculature is a significant factor in many studies, which involve cerebrovascular function. Perhaps contrary to expectation, the literature in this area is sparse and the characteristics of blood flow waveforms are ill defined. A better understanding of the variation of blood flow rate and pulsatility may aid our knowledge of risk factors involved in diseases and conditions, such as stroke, arteriovenous malformation, or aneurysm rupture. This study sought to characterise the blood flow waveform over the cardiac cycle at levels within the carotid artery and basilar artery (BA) in a normal cohort. The study cohort consisted of 22 subjects (recruitment age: 20 to 40 years) with no history of vascular disease (median age=26 years, interquartile range=25 to 32 years). Two-dimensional quantitative phase-contrast magnetic resonance imaging was performed on each subject at nine anatomic locations within the carotid artery and BA. Significant differences in pulsatility were present within the carotid tree. Archetypal VFR waveforms were established for this group at the nine locations. A normal individual's VFR waveform at a location within the carotid tree can be estimated by taking the group's archetypal waveform for that location, and scaling by the individual's average flow rate.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3