A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes

Author:

Chen Zhongrong,Memon Kashan,Cao Yunxia,Zhao Gang

Abstract

AbstractInvestigation of oocyte membrane permeability plays a crucial role in fertility preservation, reproductive medicine, and reproductive pharmacology. However, the commonly used methods have disadvantages such as high time consumption, low efficiency, and cumbersome data processing. In addition, the developmental potential of oocytes after measurement has not been fully validated in previous studies. Moreover, oocytes can only maintain their best status in vitro within a very limited time. To address these limitations, we developed a novel multichannel microfluidic chip with newly designed micropillars that provide feasible and repeatable oocyte capture. The osmotic responses of three oocytes at different or the same cryoprotectant (CPA) concentrations were measured simultaneously, which greatly improved the measurement efficiency. Importantly, the CPA concentration dependence of mouse oocyte membrane permeability was found. Moreover, a neural network algorithm was employed to improve the efficiency and accuracy of data processing. Furthermore, analysis of fertilization and embryo transfer after perfusion indicated that the microfluidic approach does not damage the developmental potential of oocytes. In brief, we report a new method based on a multichannel microfluidic chip that enables synchronous and nondestructive measurement of the permeability of multiple oocytes.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3