Design rules for dense and rapid Lissajous scanning

Author:

Wang JunyaORCID,Zhang Gaofei,You Zheng

Abstract

AbstractLissajous microscanners are very popular in compact laser-scanning applications, such as solid-state light detection and ranging (LIDAR), owing to their high-quality factor and low power consumption. In the Lissajous scanner driven by a two-axis micro-electro-mechanical system scanning mirror (MEMS-SM), the design theory is insufficient to meet the temporal and spatial resolution at the same time. In this paper, the greatest common divisor of the two-axis driving frequency is used as the temporal resolution, the concept of the fill factor (FF) is used to describe the spatial resolution of the scanner, and a general algorithm for calculating the FF is presented. Combined with the characteristics of the Lissajous trajectory, three design rules of the general Lissajous scanner are proposed, and the design theory of the Lissajous scanner enabling MEMS LIDAR is perfected. Experimental results show that the proposed design rules can effectively meet the LIDAR design requirements.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3