Abstract
AbstractLissajous microscanners are very popular in compact laser-scanning applications, such as solid-state light detection and ranging (LIDAR), owing to their high-quality factor and low power consumption. In the Lissajous scanner driven by a two-axis micro-electro-mechanical system scanning mirror (MEMS-SM), the design theory is insufficient to meet the temporal and spatial resolution at the same time. In this paper, the greatest common divisor of the two-axis driving frequency is used as the temporal resolution, the concept of the fill factor (FF) is used to describe the spatial resolution of the scanner, and a general algorithm for calculating the FF is presented. Combined with the characteristics of the Lissajous trajectory, three design rules of the general Lissajous scanner are proposed, and the design theory of the Lissajous scanner enabling MEMS LIDAR is perfected. Experimental results show that the proposed design rules can effectively meet the LIDAR design requirements.
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献