Rapid micro-immunohistochemistry

Author:

Lovchik Robert D.,Taylor DavidORCID,Kaigala GovindORCID

Abstract

AbstractWe present a new and versatile implementation of rapid and localized immunohistochemical staining of tissue sections. Immunohistochemistry (IHC) comprises a sequence of specific biochemical reactions and allows the detection of specific proteins in tissue sections. For the rapid implementation of IHC, we fabricated horizontally oriented microfluidic probes (MFPs) with functionally designed apertures to enable square and circular footprints, which we employ to locally expose a tissue to time-optimized sequences of different biochemicals. We show that the two main incubation steps of IHC protocols can be performed on MDAMB468-1510A cell block sections in less than 30 min, compared to incubation times of an hour or more in standard protocols. IHC analysis on the timescale of tens of minutes could potentially be applied during surgery, enabling clinicians to react in more dynamically and efficiently. Furthermore, this rapid IHC implementation along with conservative tissue usage has strong potential for the implementation of multiplexed assays, allowing the exploration of optimal assay conditions with a small amount of tissue to ensure high-quality staining results for the remainder of the sample.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogel Stamping for Rapid, Multiplexed, Point-of-Care Immunostaining of Cells and Tissues;ACS Applied Materials & Interfaces;2022-06-07

2. Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences;Lab on a Chip;2022

3. Image annotation as a multi-aspect case study;Innovative Data Integration and Conceptual Space Modeling for COVID, Cancer, and Cardiac Care;2022

4. Modular design, image biomarkers, and radiomics;Innovative Data Integration and Conceptual Space Modeling for COVID, Cancer, and Cardiac Care;2022

5. Biopatterning: The Art of Patterning Biomolecules on Surfaces;Langmuir;2021-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3