Fabrication of crystalline submicro-to-nano carbon wire for achieving high current density and ultrastable current

Author:

Deng Jufeng,Liu Chong,song Dian,Madou Marc

Abstract

AbstractCrystalline carbon nanowire arrays were fabricated taking advantage of near-field electrospinning and stress decyanation. A novel fabrication method for carbon nanowires with radii ranging from ~2.15 µm down to ~25 nm was developed based on implementing nitrogen pretreatment on the silica surface and then aligning polymer nanofibers during near-field electrospinning at an ultralow voltage. Stress decyanation was implemented by subsequently pyrolyzing a polymer nanofiber array on the silica surface at 1000 °C for 1 h in an N2 atmosphere, thus obtaining a crystalline carbon nanowire array with a nanostructured surface. Various crystalline nanostructures were fabricated on the nanowire surface, and their electrochemical performance was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Crystalline carbon wires with diameters ranging from micrometers to submicrometers displayed carbon nanoelectrode-like behavior with their CV curve having a sigmoidal shape. A highly crystalline carbon nanowire array showed distinct behavior, having a monotonically increasing straight line as its CV curve and a semicircular EIS spectrum; these results demonstrated its ultrastable current, as determined by electron transfer. Furthermore, nanocrystalline-structured carbon wires with diameters of ~305 nm displayed at least a fourfold higher peak current density during CV (4000 mA/m2) than highly crystalline carbon nanowires with diameters of ~100 nm and porous microwires with diameters of ~4.3 µm.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3