Correction of thermal airflow distortion in warpage measurements of microelectronic packaging structures via deep learning-based digital image correlation

Author:

Gao Yuhan,Chen Yuxin,Yu Ziniu,Xiong Chuanguo,Lei Xin,Lv Weishan,Liu Sheng,Zhu FulongORCID

Abstract

AbstractThe projected speckle-based three-dimensional digital image correlation method (3D-DIC) is being increasingly used in the reliability measurement of microelectronic packaging structures because of its noninvasive nature, high precision, and low cost. However, during the measurement of the thermal reliability of packaging structures, the thermal airflow generated by heating introduces distortions in the images captured by the DIC measurement system, impacting the accuracy and reliability of noncontact measurements. To address this challenge, a thermal airflow distortion correction model based on the transformer attention mechanism is proposed specifically for the measurement of thermal warpage in microelectronic packaging structures. This model avoids the oversmoothing issue associated with convolutional neural networks and the lack of physical constraints in generative adversarial networks, ensuring the precision of grayscale gradient changes in speckle patterns and minimizing adverse effects on DIC calculation accuracy. By inputting the distorted images captured by the DIC measurement system into the network, corrected images are obtained for 3D-DIC calculations, thus allowing the thermal warpage measurement results of the sample to be acquired. Through experiments measuring topography with customized step block specimens, the effectiveness of the proposed method in improving warpage measurement accuracy is confirmed; this is particularly true when captured images are affected by thermal airflow at 140 °C and 160 °C, temperatures commonly encountered in thermal reliability testing of packaging structures. The method successfully reduces the standard deviation from 9.829 to 5.943 µm and from 12.318 to 6.418 µm, respectively. The results demonstrate the substantial practical value of this method for measuring thermal warpage in microelectronic packaging structures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3