Nanofiber self-consistent additive manufacturing process for 3D microfluidics

Author:

Qiu Bin,Chen Xiaojun,Xu Feng,Wu Dongyang,Zhou Yike,Tu Wenchang,Jin Hang,He Gonghan,Chen Songyue,Sun DaohengORCID

Abstract

Abstract3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication. In this paper, a 3D printing strategy named nanofiber self-consistent additive manufacturing (NSCAM) is proposed for integrated 3D microfluidic chip fabrication with porous nanofibers as supporting structures, which avoids the sacrificial layer release process. In the NSCAM process, electrospinning and electrohydrodynamic jet (E-jet) writing are alternately employed. The porous polyimide nanofiber mats formed by electrospinning are ingeniously applied as both supporting structures for the suspended layer and percolating media for liquid flow, while the polydimethylsiloxane E-jet writing ink printed on the nanofiber mats (named construction fluid in this paper) controllably permeates through the porous mats. After curing, the resultant construction fluid–nanofiber composites are formed as 3D channel walls. As a proof of concept, a microfluidic pressure-gain valve, which contains typical features of narrow channels and movable membranes, was fabricated, and the printed valve was totally closed under a control pressure of 45 kPa with a fast dynamic response of 52.6 ms, indicating the feasibility of NSCAM. Therefore, we believe NSCAM is a promising technique for manufacturing microdevices that include movable membrane cavities, pillar cavities, and porous scaffolds, showing broad applications in 3D microfluidics, soft robot drivers or sensors, and organ-on-a-chip systems.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3