Genetic prediction of male pattern baldness based on large independent datasets

Author:

Chen Yan,Hysi PirroORCID,Maj Carlo,Heilmann-Heimbach Stefanie,Spector Timothy D.,Liu FanORCID,Kayser ManfredORCID

Abstract

AbstractGenetic prediction of male pattern baldness (MPB) is important in science and society. Previous genetic MPB prediction models were limited by sparse marker coverage, small sample size, and/or data dependency in the different analytical steps. Here, we present novel models for genetic prediction of MPB based on a large set of markers and large independent subsample sets drawn among 187,435 European subjects. We selected 117 SNP predictors within 85 distinct loci from a list of 270 previously MPB-associated SNPs in 55,573 males of the UK Biobank Study (UKBB). Based on these 117 SNPs with and without age as additional predictor, we trained, by use of different methods, prediction models in a non-overlapping subset of 104,694 UKBB males and tested them in a non-overlapping subset of 26,177 UKBB males. Estimates of prediction accuracy were similar between methods with AUC ranges of 0.725–0.728 for severe, 0.631–0.635 for moderate, 0.598–0.602 for slight, and 0.708–0.711 for no hair loss with age, and slightly lower without, while prediction of any versus no hair loss gave 0.690–0.711 with age and slightly lower without. External validation in an early-onset enriched MPB dataset from the Bonn Study (N = 991) showed improved prediction accuracy without considering age such as AUC of 0.830 for no vs. any hair loss. Because of the large number of markers and the large independent datasets used for the different analytical steps, the newly presented genetic prediction models are the most reliable ones currently available for MPB or any other human appearance trait.

Funder

EC | Horizon 2020 Framework Programme

University of Chinese Academy of Science (UCAS) Joint PhD Training Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3