GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows

Author:

Pati SarthakORCID,Thakur Siddhesh P.,Hamamcı İbrahim Ethem,Baid Ujjwal,Baheti Bhakti,Bhalerao Megh,Güley Orhun,Mouchtaris SofiaORCID,Lang David,Thermos Spyridon,Gotkowski Karol,González Camila,Grenko Caleb,Getka AlexanderORCID,Edwards BrandonORCID,Sheller MicahORCID,Wu Junwen,Karkada DeepthiORCID,Panchumarthy Ravi,Ahluwalia Vinayak,Zou Chunrui,Bashyam Vishnu,Li Yuemeng,Haghighi Babak,Chitalia RheaORCID,Abousamra Shahira,Kurc Tahsin M.ORCID,Gastounioti AimiliaORCID,Er SezginORCID,Bergman Mark,Saltz Joel H.ORCID,Fan YongORCID,Shah Prashant,Mukhopadhyay AnirbanORCID,Tsaftaris Sotirios A.,Menze Bjoern,Davatzikos ChristosORCID,Kontos Despina,Karargyris Alexandros,Umeton RenatoORCID,Mattson Peter,Bakas SpyridonORCID

Abstract

AbstractDeep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3