The sodium/myo-inositol co-transporter SLC5A3 promotes non-small cell lung cancer cell growth

Author:

Cui Zihan,Mu Chuanyong,Wu Zhichao,Pan Shu,Cheng Zewen,Zhang Zhi-qingORCID,Zhao JunORCID,Xu ChunORCID

Abstract

AbstractIdentification of novel molecular signaling targets for non-small cell lung cancer (NSCLC) is important. The present study examined expression, functions and possible underlying mechanisms of the sodium/myo-inositol co-transporter SLC5A3 in NSCLC. The Cancer Genome Atlas (TCGA) database and local NSCLC tissue results demonstrated that SLC5A3 expression in NSCLC tissues (including patient-derived primary NSCLC cells) was significantly higher than that in normal lung tissues and lung epithelial cells. In primary NSCLC cells and immortalized lines, SLC5A3 depletion, using small hairpin RNA (shRNA) and CRSIRP/Cas9 methods, robustly impeded cell proliferation and migration, simultaneously provoking cell cycle arrest and apoptosis. Conversely, ectopic overexpression of SLC5A3 further enhanced proliferation and migration in primary NSCLC cells. The intracellular myo-inositol contents and Akt-mTOR activation were largely inhibited by SLC5A3 silencing or knockout (KO), but were augmented following SLC5A3 overexpression in primary NSCLC cells. Significantly, SLC5A3 KO-induced anti-NSCLC cell activity was largely ameliorated by exogenously adding myo-inositol or by a constitutively-active Akt construct. By employing the patient-derived xenograft (PDX) model, we found that the growth of subcutaneous NSCLC xenografts in nude mice was largely inhibited by intratumoral injection SLC5A3 shRNA adeno-associated virus (AAV). SLC5A3 silencing, myo-inositol depletion, Akt-mTOR inactivation and apoptosis induction were detected in SLC5A3 shRNA virus-injected NSCLC xenograft tissues. Together, elevated SLC5A3 promotes NSCLC cell growth possibly by maintaining myo-inositol contents and promoting Akt-mTOR activation.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3