The spliceosome factor sart3 regulates hematopoietic stem/progenitor cell development in zebrafish through the p53 pathway

Author:

Zhao YanORCID,Wu MeiORCID,Li Jing,Meng Ping,Chen Jiakui,Huang Zhibin,Xu JinORCID,Wen Zilong,Zhang WenqingORCID,Zhang YiyueORCID

Abstract

AbstractHematopoietic stem cells (HSCs) possess the potential for self-renew and the capacity, throughout life, to differentiate into all blood cell lineages. Yet, the mechanistic basis for HSC development remains largely unknown. In this study, we characterized a zebrafish smu471 mutant with hematopoietic stem/progenitor cell (HSPC) defects and found that sart3 was the causative gene. RNA expression profiling of the sart3smu471 mutant revealed spliceosome and p53 signaling pathway to be the most significantly enriched pathways in the sart3smu471 mutant. Knock down of p53 rescued HSPC development in the sart3smu471 mutant. Interestingly, the p53 inhibitor, mdm4, had undergone an alternative splicing event in the mutant. Restoration of mdm4 partially rescued HSPC deficiency. Thus, our data suggest that HSPC proliferation and maintenance require sart3 to ensure the correct splicing and expression of mdm4, so that the p53 pathway is properly inhibited to prevent definitive hematopoiesis failure. This study expands our knowledge of the regulatory mechanisms that impact HSPC development and sheds light on the mechanistic basis and potential therapeutic use of sart3 in spliceosome-mdm4-p53 related disorders.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3