Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation

Author:

Zhu Jin-Feng,Huang Wei,Yi Hong-Mei,Xiao Ta,Li Jiao-Yang,Feng Juan,Yi Hong,Lu Shan-Shan,Li Xin-Hui,Lu Rou-Huang,He Qiu-Yan,Xiao Zhi-Qiang

Abstract

AbstractAnnexin A1 (ANXA1) is dysregulated in the various tumors. However, the role and mechanism of ANXA1 in the cancers are poorly understood. In this study, we first showed a clinically positive correlation between ANXA1 and autophagy-associated protein SQSTM1 expression in nasopharyngeal carcinoma (NPC) and ANXA1-regulating SQSTM1 expression through autophagy, and further demonstrated that ANXA1 inhibited BECN1 and ATG5-dependent autophagy in the NPC cells. Using phospho-kinase antibody array to identify signaling through which ANXA1 regulated NPC cell autophagy, we found that ANXA1-suppressed autophagy was associated with PI3K/AKT signaling activation. We also showed that ANXA1 expression was significantly increased in the NPCs with metastasis relative to NPCs without metastasis and positively correlated with lymphonode and distant metastasis; high ANXA1 expression in the NPC cells promoted in vitro tumor cell migration and invasion and in vivo metastasis. Lastly, we showed that inhibition of autophagy restored the ability of tumor cell migration and invasion, epithelial–mesenchymal transition (EMT)-like alterations and in vivo metastasis in the ANXA1 knockdown NPC cells with autophagy activation; ANXA1-suppresed autophagy induced EMT-like alterations possibly by inhibiting autophagy-mediated degradation of Snail. Our data suggest that ANXA1-suppressed autophagy promotes NPC cell migration, invasion and metastasis by activating PI3K/AKT signaling pathway, highlighting that the activation of autophagy may inhibit metastasis of NPC with high ANXA1 expression.

Funder

National Natural Science Foundation of China

This work was supported by National Basic Research Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3