Exploring the transcriptional cooperation between RUNX2 and its associated elncRNA RAIN

Author:

Vitale EmanueleORCID,Manicardi Veronica,Gugnoni MilaORCID,Torricelli Federica,Donati Benedetta,Muccioli Silvia,Salviato Elisa,Rossi Teresa,Manzotti GloriaORCID,Piana SimonettaORCID,Ciarrocchi AlessiaORCID

Abstract

AbstractRecent insights into the mechanisms controlling gene expression identified enhancer-associated long non-coding RNAs (elncRNAs) as master players of transcription in cancers. RUNX2, a mammalian RUNT-related transcription factor, is increasingly recognized in cancer biology for its role in supporting survival and progression also in thyroid cancer (TC). We recently identified, within the RUNX2 locus, a novel elncRNA that we named RAIN (RUNX2 associated intergenic lncRNA). We showed that RAIN and RUNX2 expression correlate in TC, both in vitro and in vivo, and that RAIN promotes RUNX2 expression by interacting with and affecting the activity of the RUNX2 P2 promoter through two distinct mechanisms. Here, we took forward these observations to explore the genome-wide transcriptional function of RAIN and its contribution to the RUNX2-dependent gene expression program in TC. By combining multiple omics data, we demonstrated that RAIN functionally cooperates with RUNX2 to the regulation of a subset of functionally related genes involved in promoting matrix remodeling, migration, and loss of differentiation. We showed that RAIN interacts with RUNX2 and its expression is required for the efficient recruitment of this TF to its target regulatory regions. In addition, our data revealed that besides RUNX2, RAIN governs a hierarchically organized complex transcriptional program by controlling a core of cancer-associated TFs that, in turn, orchestrate the expression of downstream genes. This evidence indicates that the functional cooperation observed between RAIN and RUNX2 can be a diffuse work mechanism for this elncRNA.

Funder

Associazione Italiana per la Ricerca sul Cancro

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3