Pathomechanisms of ALS8: altered autophagy and defective RNA binding protein (RBP) homeostasis due to the VAPB P56S mutation

Author:

Tripathi Priyanka,Guo Haihong,Dreser Alice,Yamoah Alfred,Sechi Antonio,Jesse Christopher MarvinORCID,Katona IstvanORCID,Doukas Panagiotis,Nikolin Stefan,Ernst Sabrina,Aronica Eleonora,Glaß Hannes,Hermann Andreas,Steinbusch Harry,Feller Alfred C.,Bergmann Markus,Jaarsma Dick,Weis Joachim,Goswami AnandORCID

Abstract

AbstractMutations in RNA binding proteins (RBPs) and in genes regulating autophagy are frequent causes of familial amyotrophic lateral sclerosis (fALS). The P56S mutation in vesicle-associated membrane protein-associated protein B (VAPB) leads to fALS (ALS8) and spinal muscular atrophy (SMA). While VAPB is primarily involved in the unfolded protein response (UPR), vesicular trafficking and in initial steps of the autophagy pathway, the effect of mutant P56S-VAPB on autophagy regulation in connection with RBP homeostasis has not been explored yet. Examining the muscle biopsy of our index ALS8 patient of European origin revealed globular accumulations of VAPB aggregates co-localised with autophagy markers LC3 and p62 in partially atrophic and atrophic muscle fibres. In line with this skin fibroblasts obtained from the same patient showed accumulation of P56S-VAPB aggregates together with LC3 and p62. Detailed investigations of autophagic flux in cell culture models revealed that P56S-VAPB alters both initial and late steps of the autophagy pathway. Accordingly, electron microscopy complemented with live cell imaging highlighted the impaired fusion of accumulated autophagosomes with lysosomes in cells expressing P56S-VAPB. Consistent with these observations, neuropathological studies of brain and spinal cord of P56S-VAPB transgenic mice revealed signs of neurodegeneration associated with altered protein quality control and defective autophagy. Autophagy and RBP homeostasis are interdependent, as demonstrated by the cytoplasmic mis-localisation of several RBPs including pTDP-43, FUS, Matrin 3 which often sequestered with P56S-VAPB aggregates both in cell culture and in the muscle biopsy of the ALS8 patient. Further confirming the notion that aggregation of the RBPs proceeds through the stress granule (SG) pathway, we found persistent G3BP- and TIAR1-positive SGs in P56S-VAPB expressing cells as well as in the ALS8 patient muscle biopsy. We conclude that P56S-VAPB-ALS8 involves a cohesive pathomechanism of aberrant RBP homeostasis together with dysfunctional autophagy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3