Legumain is a predictor of all-cause mortality and potential therapeutic target in acute myocardial infarction

Author:

Yang Hui,He Yuhu,Zou Pu,Hu Yilei,Li Xuping,Tang Liang,Zhu Zhaowei,Tai Shi,Tu Tao,Xiao Yichao,Chen Mingxian,Wu Chenlu,Zhou ShenghuaORCID

Abstract

AbstractThe prognostic impact of extracellular matrix (ECM) modulation and its regulatory mechanism post-acute myocardial infarction (AMI), require further clarification. Herein, we explore the predictive role of legumain—which showed the ability in ECM degradation—in an AMI patient cohort and investigate the underlying mechanisms. A total of 212 AMI patients and 323 healthy controls were enrolled in the study. Moreover, AMI was induced in mice by permanent ligation of the left anterior descending artery and fibroblasts were adopted for mechanism analysis. Based on the cut-off value for the receiver-operating characteristics curve, AMI patients were stratified into low (n = 168) and high (n = 44) plasma legumain concentration (PLG) groups. However, PLG was significantly higher in AMI patients than that in the healthy controls (median 5.9 μg/L [interquartile range: 4.2–9.3 μg/L] vs. median 4.4 μg/L [interquartile range: 3.2–6.1 μg/L], P < 0.001). All-cause mortality was significantly higher in the high PLG group compared to that in the low PLG group (median follow-up period, 39.2 months; 31.8% vs. 12.5%; P = 0.002). Multivariate Cox regression analysis showed that high PLG was associated with increased all-cause mortality after adjusting for clinical confounders (HR = 3.1, 95% confidence interval (CI) = 1.4–7.0, P = 0.005). In accordance with the clinical observations, legumain concentration was also increased in peripheral blood, and infarcted cardiac tissue from experimental AMI mice. Pharmacological blockade of legumain with RR-11a, improved cardiac function, decreased cardiac rupture rate, and attenuated left chamber dilation and wall thinning post-AMI. Hence, plasma legumain concentration is of prognostic value in AMI patients. Moreover, legumain aggravates cardiac remodelling through promoting ECM degradation which occurs, at least partially, via activation of the MMP-2 pathway.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3