Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns
Author:
Publisher
Springer Science and Business Media LLC
Subject
Pathology and Forensic Medicine
Link
http://www.nature.com/articles/s41379-020-00712-7.pdf
Reference31 articles.
1. Griffin J, Treanor D. Digital pathology in clinical use: where are we now and what is holding us back? Histopathology. 2017;70:134–45.
2. Parwani AV. Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis. Diagn Pathol. 2019;14:19–21.
3. Arevalo J, Cruz-roa A, Arias V, Romero E, González FA. An unsupervised feature learning framework for basal cell carcinoma image analysis. Artif Intell Med. 2015;64:131–45.
4. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NNC, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep. 2017;7:1–14.
5. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck V, Silva K, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25:1301–9.
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Eye tracking in digital pathology: A comprehensive literature review;Journal of Pathology Informatics;2024-12
2. New vision of HookEfficientNet deep neural network: Intelligent histopathological recognition system of non-small cell lung cancer;Computers in Biology and Medicine;2024-08
3. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy;npj Digital Medicine;2024-05-04
4. Artificial intelligence and skin cancer;Frontiers in Medicine;2024-03-19
5. Grundprinzipien der künstlichen Intelligenz in der Dermatologie erklärt am Beispiel des Melanoms;JDDG: Journal der Deutschen Dermatologischen Gesellschaft;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3