Dynamicity of brain network organization & their community architecture as characterizing features for classification of common mental disorders from whole-brain connectome

Author:

Sastry Nisha ChetanaORCID,Banerjee Arpan

Abstract

AbstractThe urgency of addressing common mental disorders (bipolar disorder, attention-deficit hyperactivity disorder (ADHD), and schizophrenia) arises from their significant societal impact. Developing strategies to support psychiatrists is crucial. Previous studies focused on the relationship between these disorders and changes in the resting-state functional connectome’s modularity, often using static functional connectivity (sFC) estimation. However, understanding the dynamic reconfiguration of resting-state brain networks with rich temporal structure is essential for comprehending neural activity and addressing mental health disorders. This study proposes an unsupervised approach combining spatial and temporal characterization of brain networks to classify common mental disorders using fMRI timeseries data from two cohorts (N = 408 participants). We employ the weighted stochastic block model to uncover mesoscale community architecture differences, providing insights into network organization. Our approach overcomes sFC limitations and biases in community detection algorithms by modelling the functional connectome’s temporal dynamics as a landscape, quantifying temporal stability at whole-brain and network levels. Findings reveal individuals with schizophrenia exhibit less assortative community structure and participate in multiple motif classes, indicating less specialized network organization. Patients with schizophrenia and ADHD demonstrate significantly reduced temporal stability compared to healthy controls. This study offers insights into functional connectivity (FC) patterns’ spatiotemporal organization and their alterations in common mental disorders, highlighting the potential of temporal stability as a biomarker.

Funder

National Brain Research Center, Manesar, India BT/ MEDIII/ NBRC/ Flagship/ Program/ 2019: Comparative mapping of common mental disorders (CMD) over lifespan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3