Afforesting arid land with renewable electricity and desalination to mitigate climate change

Author:

Caldera UpekshaORCID,Breyer ChristianORCID

Abstract

AbstractAfforestation is one of the most practised carbon dioxide removal methods but is constrained by the availability of suitable land and sufficient water resources. In this research, existing concepts of low-cost renewable electricity (RE) and seawater desalination are built upon to identify the global CO2 sequestration potential if RE-powered desalination plants were used to irrigate forests on arid land over the period 2030–2100. Results indicate a cumulative CO2 sequestration potential of 730 GtCO2 during the period. Global average cost is estimated to be €457 per tCO2 in 2030 but decrease to €100 per tCO2 by 2100, driven by the decreasing cost of RE and increasing CO2 sequestration rates of the forests. Regions closer to the coast with abundant solar resources and cooler climate experience the least costs, with costs as low as €50 per tCO2 by 2070. The results suggest a key role for afforestation projects irrigated with RE-based desalination within the climate change mitigation portfolio, which is currently based on bioenergy carbon capture and storage, and direct air carbon capture and storage plants.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Renewable Energy, Sustainability and the Environment,Ecology,Geography, Planning and Development,Food Science,Global and Planetary Change

Reference63 articles.

1. IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

2. Rueda, O., Mogollón, J. M., Tukker, A. & Scherer, L. Negative-emissions technology portfolios to meet the 1.5 °C target. Glob. Environ. Change 67, 102238 (2021).

3. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

4. Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).

5. Food and Agricultural Organisation of the United Nations. Global Forest Resources Assessments: Terms and Definitions FRA 2020. (United Nations, 2020); https://www.fao.org/3/I8661EN/i8661en.pdf

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3