Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti

Author:

Chae Keun,Contreras Bryan,Romanowski Joseph S.,Dawson Chanell,Myles Kevin M.,Adelman Zach N.ORCID

Abstract

AbstractWhile gene drive strategies have been proposed to aid in the control of mosquito-borne diseases, additional genome engineering technologies may be required to establish a defined end-of-product-life timeline. We previously demonstrated that single-strand annealing (SSA) was sufficient to program the scarless elimination of a transgene while restoring a disrupted gene in the disease vector mosquito Aedes aegypti. Here, we extend these findings by establishing that complete transgene removal (four gene cassettes comprising ~8-kb) can be programmed in cis. Reducing the length of the direct repeat from 700-bp to 200-bp reduces, but does not eliminate, SSA activity. In contrast, increasing direct repeat length to 1.5-kb does not increase SSA rates, suggesting diminishing returns above a certain threshold size. Finally, we show that while the homing endonuclease Y2-I-AniI triggered both SSA and NHEJ at significantly higher rates than I-SceI at one genomic locus (P5-EGFP), repair events are heavily skewed towards NHEJ at another locus (kmo), suggesting the nuclease used and the genomic region targeted have a substantial influence on repair outcomes. Taken together, this work establishes the feasibility of engineering temporary transgenes in disease vector mosquitoes, while providing critical details concerning important operational parameters.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3