Abstract
AbstractImaging ultrastructures in cells using Focused Ion Beam Scanning Electron Microscope (FIB-SEM) yields section-by-section images at nano-resolution. Unfortunately, we observe that FIB-SEM often introduces sub-pixel drifts between sections, in the order of 2.5 nm. The accumulation of these drifts significantly skews distance measures and geometric structures, which standard image registration techniques fail to correct. We demonstrate that registration techniques based on mutual information and sum-of-squared-distances significantly underestimate the drift since they are agnostic to image content. For neuronal data at nano-resolution, we discovered that vesicles serve as a statistically simple geometric structure, making them well-suited for estimating the drift with sub-pixel accuracy. Here, we develop a statistical model of vesicle shapes for drift correction, demonstrate its superiority, and provide a self-contained freely available application for estimating and correcting drifted datasets with vesicles.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献