Abstract
AbstractProtein dynamics plays key roles in ligand binding. However, the microscopic description of conformational dynamics-coupled ligand binding remains a challenge. In this study, we integrate molecular dynamics simulations, Markov state model (MSM) analysis and experimental methods to characterize the conformational dynamics of ligand-bound glutamine binding protein (GlnBP). We show that ligand-bound GlnBP has high conformational flexibility and additional metastable binding sites, presenting a more complex energy landscape than the scenario in the absence of ligand. The diverse conformations of GlnBP demonstrate different binding affinities and entail complex transition kinetics, implicating a concerted ligand binding mechanism. Single molecule fluorescence resonance energy transfer measurements and mutagenesis experiments are performed to validate our MSM-derived structure ensemble as well as the binding mechanism. Collectively, our study provides deeper insights into the protein dynamics-coupled ligand binding, revealing an intricate regulatory network underlying the apparent binding affinity.
Funder
National Natural Science Foundation of China
the National 1000 Youth Talents Program of China
Ministry of Science and Technology of the People’s Republic of China
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献