Abstract
AbstractIn most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation ofVigna unguiculata. Both functionalCENH3variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation ofCENH3.1resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast,CENH3.2knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.
Funder
Bill and Melinda Gates Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference74 articles.
1. Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. https://doi.org/10.1111/tpj.14349 (2019).
2. Padulosi, S. & Ng, N. in Advances in Cowpea Research (eds Singh, B. B., Mohan Raji, D. R. & Dashiel, K. E.) 1–12 (International Institute of Tropical Agriculture, Ibadan, Nigeria and Japan International Research Center for Agricultural Sciences Tsukuba, Ibaraki, Japan, IITA, 1997).
3. Hall, A. E. Breeding for adaptation to drought and heat in cowpea. Eur. J. Agron. 21, 447–454 (2004).
4. Galasso, I. et al. Location of two repeated DNA sequences of Vigna unguiculata (L.) Walp. on chromosomes and extended DNA fibers by FISH. J. Genet. Breed. 53, 215–221 (1999).
5. Iwata-Otsubo, A. et al. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res. 24, 197–216 (2016).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献