Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS

Author:

Yang YaodongORCID,Chen GuangyongORCID,Li Jinpeng,Li Junyou,Zhang Odin,Zhang Xujun,Li LanqingORCID,Hao JianyeORCID,Wang ErchengORCID,Heng Pheng-Ann

Abstract

AbstractTarget-aware drug discovery has greatly accelerated the drug discovery process to design small-molecule ligands with high binding affinity to disease-related protein targets. Conditioned on targeted proteins, previous works utilize various kinds of deep generative models and have shown great potential in generating molecules with strong protein-ligand binding interactions. However, beyond binding affinity, effective drug molecules must manifest other essential properties such as high drug-likeness, which are not explicitly addressed by current target-aware generative methods. In this article, aiming to bridge the gap of multi-objective target-aware molecule generation in the field of deep learning-based drug discovery, we propose ParetoDrug, a Pareto Monte Carlo Tree Search (MCTS) generation algorithm. ParetoDrug searches molecules on the Pareto Front in chemical space using MCTS to enable synchronous optimization of multiple properties. Specifically, ParetoDrug utilizes pretrained atom-by-atom autoregressive generative models for the exploration guidance to desired molecules during MCTS searching. Besides, when selecting the next atom symbol, a scheme named ParetoPUCT is proposed to balance exploration and exploitation. Benchmark experiments and case studies demonstrate that ParetoDrug is highly effective in traversing the large and complex chemical space to discover novel compounds with satisfactory binding affinities and drug-like properties for various multi-objective target-aware drug discovery tasks.

Funder

National Natural Science Foundation of China

Hong Kong Innovation and Technology Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3