Conditional generative adversarial networks applied to EEG data can inform about the inter-relation of antagonistic behaviors on a neural level

Author:

Vahid Amirali,Mückschel MoritzORCID,Stober SebastianORCID,Stock Ann-Kathrin,Beste ChristianORCID

Abstract

AbstractGoal-directed actions frequently require a balance between antagonistic processes (e.g., executing and inhibiting a response), often showing an interdependency concerning what constitutes goal-directed behavior. While an inter-dependency of antagonistic actions is well described at a behavioral level, a possible inter-dependency of underlying processes at a neuronal level is still enigmatic. However, if there is an interdependency, it should be possible to predict the neurophysiological processes underlying inhibitory control based on the neural processes underlying speeded automatic responses. Based on that rationale, we applied artificial intelligence and source localization methods to human EEG recordings from N = 255 participants undergoing a response inhibition experiment (Go/Nogo task). We show that the amplitude and timing of scalp potentials and their functional neuroanatomical sources during inhibitory control can be inferred by conditional generative adversarial networks (cGANs) using neurophysiological data recorded during response execution. We provide insights into possible limitations in the use of cGANs to delineate the interdependency of antagonistic actions on a neurophysiological level. Nevertheless, artificial intelligence methods can provide information about interdependencies between opposing cognitive processes on a neurophysiological level with relevance for cognitive theory.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3