Abstract
AbstractTelomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models. Similar to astronauts in the space radiation environment and climbers of Mt. Everest, in vitro radiation exposure prompted increased transcription of TERRA, while simulated microgravity did not. Data suggest a specific TERRA DDR to telomeric double-strand breaks (DSBs), and provide direct demonstration of hybridized TERRA at telomere-specific DSB sites, indicative of protective TERRA:telomeric DNA hybrid formation. Targeted telomeric DSBs also resulted in accumulation of TERRA foci in G2-phase, supportive of TERRA’s role in facilitating recombination-mediated telomere elongation. Results have important implications for scenarios involving persistent telomeric DNA damage, such as those associated with chronic oxidative stress (e.g., aging, systemic inflammation, environmental and occupational radiation exposures), which can trigger transient ALT in normal human cells, as well as for targeting TERRA as a therapeutic strategy against ALT-positive tumors.
Funder
National Aeronautics and Space Administration
GI Research Foundation WorldQuant Foundation
Publisher
Springer Science and Business Media LLC
Reference109 articles.
1. Watson, J. D. Origin of concatameric T7 DNA. Nat. N. Biol. 239, 197–201 (1972).
2. Olovnikov, A. M. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk. SSSR 201, 1496–1499 (1971).
3. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 126, 234–282 (1941).
4. de Lange, T. How telomeres solve the end-protection problem. Science 326, 948–952 (2009).
5. Moyzis, R. K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 (1988).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献