A PSII photosynthetic control is activated in anoxic cultures of green algae following illumination

Author:

Milrad Yuval,Nagy Valéria,Elman Tamar,Fadeeva Maria,Tóth Szilvia Z.,Yacoby IftachORCID

Abstract

AbstractPhotosynthetic hydrogen production from microalgae is considered to have potential as a renewable energy source. Yet, the process has two main limitations holding it back from scaling up; (i) electron loss to competing processes, mainly carbon fixation and (ii) sensitivity to O2 which diminishes the expression and the activity of the hydrogenase enzyme catalyzing H2 production. Here we report a third, hitherto unknown challenge: We found that under anoxia, a slow-down switch is activated in photosystem II (PSII), diminishing the maximal photosynthetic productivity by three-fold. Using purified PSII and applying in vivo spectroscopic and mass spectrometric techniques on Chlamydomonas reinhardtii cultures, we show that this switch is activated under anoxia, within 10 s of illumination. Furthermore, we show that the recovery to the initial rate takes place following 15 min of dark anoxia, and propose a mechanism in which, modulation in electron transfer at the acceptor site of PSII diminishes its output. Such insights into the mechanism broaden our understanding of anoxic photosynthesis and its regulation in green algae and inspire new strategies to improve bio-energy yields.

Funder

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3