Certainty of success: three critical parameters in coronavirus vaccine development

Author:

Kaslow David C.

Abstract

AbstractVaccines for 17 viral pathogens have been licensed for use in humans. Previously, two critical biological parameters of the pathogen and the host–pathogen interaction—incubation period and broadly protective, relative immunogenicity—were proposed to account for much of the past successes in vaccine development, and to be useful in estimating the “certainty of success” of developing an effective vaccine for viral pathogens for which a vaccine currently does not exist. In considering the “certainty of success” in development of human coronavirus vaccines, particularly SARS-CoV-2, a third, related critical parameter is proposed—infectious inoculum intensity, at an individual-level, and force of infection, at a population-level. Reducing the infectious inoculum intensity (and force of infection, at a population-level) is predicted to lengthen the incubation period, which in turn is predicted to reduce the severity of illness, and increase the opportunity for an anamnestic response upon exposure to the circulating virus. Similarly, successfully implementing individual- and population-based behaviors that reduce the infectious inoculum intensity and force of infection, respectively, while testing and deploying COVID-19 vaccines is predicted to increase the “certainty of success” of demonstrating vaccine efficacy and controlling SARS-CoV-2 infection, disease, death, and the pandemic itself.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology

Reference95 articles.

1. Kaslow, D. C. Biological feasibility of developing prophylactic vaccines for viral pathogens: incubation period as a critical parameter. Hum. Vaccin. 3, 1–7 (2007).

2. Hanley, K. A. The double-edged sword: how evolution can make or break a live-attenuated virus vaccine. Evolution 4, 635–643 (2011).

3. Plotkin, S. A. & Caplan, A. Extraordinary diseases require extraordinary solutions. Vaccine S0264410X20305326, https://doi.org/10.1016/j.vaccine.2020.04.039 (2020).

4. Heneghan, C., Brassey, J. & Jefferson, T. SARS-CoV-2 viral load and the severity of COVID-19. CEBM. https://www.cebm.net/covid-19/sars-cov-2-viral-load-and-the-severity-of-covid-19/ (2020).

5. Glynn, J. R. & Bradley, D. J. Inoculum size, incubation period and severity of malaria. Analysis of data from malaria therapy records. Parasitology 110, 7–19 (1995).

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3