Coat-and-print patterning of silver nanowires for flexible and transparent electronics

Author:

Li WeiweiORCID,Meredov Azat,Shamim Atif

Abstract

AbstractSilver nanowires (Ag NWs) possess excellent optoelectronic properties, which have led to many technology-focused applications of transparent and flexible electronics. Many of these applications require patterning of Ag NWs into desired shapes, for which mask-based and printing-based techniques have been developed and widely used. However, there are still several limitations associated to these techniques. These limitations, such as complicated patterning procedures, limited patterning area, and compromised optical transparency, hamper the efficient fabrication of high-performance Ag NW patterns. Here, we propose a coat-and-print approach for effectively patterning Ag NWs. We printed a polymer-based ink on the spin-coated Ag NW films. The ink acts as a protective layer to help remove excess Ag NWs from the substrate and then dissolves itself into an organic solvent. In this way, we can take advantage of both coating-based techniques (lead to Ag NWs with high transparency) and printing-based techniques (efficiently pattern diverse shapes). The resultant Ag NW patterns exhibit comparable conductivity (sheet resistance: 7.1 to 30 Ohm/sq) and transparency (transmittance: 84 to 95% at λ = 550 nm) to those made by conventional coating methods. In addition, the patterned Ag NWs exhibit robust mechanical stability and reliability, surviving extensive bending and peeling tests. Due to higher conductivity, efficient patterning ability and inherent transparency, this material system and application method is highly suitable for transparent and flexible electronics. As a proof of concept, this research demonstrates a wide-band antenna, operating in the mm-wave range that includes the 5G communication band. The proposed antenna exhibits a wide bandwidth of 26 GHz (from 17.9 GHz to 44 GHz), robust return loss under 1000 cyclic bending (bending radius of 3.5 mm), and decent transparency over the entire visible wavelength (86.8% transmittance at λ = 550 nm). This work’s promising results indicate that this method can be adapted for roll-to-roll manufacturing to efficiently produce patterned and optically transparent devices.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3