Abstract
AbstractThe space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids and moons of other planets is one of the biggest challenges for scientists and engineers for the new millennium. The enabling of in-space cryogenic rocket engines and the Lower-Earth-Orbit (LEO) cryogenic fuel depots for these future manned and robotic space exploration missions begins with the technology development of advanced cryogenic thermal-fluid management systems for the propellant transfer line and storage tank system. One of the key thermal-fluid management operations is the chilldown and filling of the propellant storage tank in space. As a result, highly energy efficient, breakthrough concepts for quenching heat transfer to conserve and minimize the cryogen consumption during chilldown have become the focus of engineering research and development, especially for the deep-space mission to Mars. In this paper, we introduce such thermal transport concepts and demonstrate their feasibilities in space for cryogenic propellant storage tank chilldown and filling in a simulated space microgravity condition on board an aircraft flying a parabolic trajectory. In order to maximize the storage tank chilldown thermal efficiency for the least amount of required cryogen consumption, the breakthrough quenching heat transfer concepts developed include the combination of charge-hold-vent (CHV) and no-vent-hold (NVF). The completed flight experiments successfully demonstrated the feasibility of the concepts and discovered that spray cooling combined with hold and vent is more efficient than the pure spray cooling for storage tank chilldown in microgravity. In microgravity, the data shows that the CHV thermal efficiency can reach 39.5%. The CHV efficiency in microgravity is 6.9% lower than that in terrestrial gravity. We also found that pulsing the spray can increase CHV efficiency by 6.1% in microgravity.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Mars Architecture Steering Group. Human exploration of Mars Design Reference Architecture 5.0. (ed. Drake, B. G.). Report No. NASA/SP-2009-566 (National Aeronautics And Space Administration) (2009).
2. Meyer, M. L. et al. Mastering cryogenic propellants. J. Aerosp. Eng. 26, 343–351 (2013).
3. Motil, S. M., Meyer, M. L., Tucker, S. P. Cryogenic fluid management technologies for advanced green propulsion systems. AIAA 45th Aerospace Sciences Meeting and Exhibit; NASA/TM-2007-214810; Reno, NV, January 8th, 2007.
4. NASA. NASA Technology Roadmaps, TA 2: In-Space Propulsion Technologies (National Aeronautics and Space Administration) (2015).
5. Shaeffer, R., Hu, H. & Chung, J. N. An experimental study on liquid nitrogen pipe chilldown and heat transfer with pulse flows. Int. J. Heat. Mass Transf. 67, 955–966 (2013).