Machine learning workflow for edge computed arrhythmia detection in exploration class missions

Author:

Mani CyrilORCID,Paul Tanya S.,Archambault Patrick M.,Marois Alexandre

Abstract

AbstractDeep-space missions require preventative care methods based on predictive models for identifying in-space pathologies. Deploying such models requires flexible edge computing, which Open Neural Network Exchange (ONNX) formats enable by optimizing inference directly on wearable edge devices. This work demonstrates an innovative approach to point-of-care machine learning model pipelines by combining this capacity with an advanced self-optimizing training scheme to classify periods of Normal Sinus Rhythm (NSR), Atrial Fibrillation (AFIB), and Atrial Flutter (AFL). 742 h of electrocardiogram (ECG) recordings were pre-processed into 30-second normalized samples where variable mode decomposition purged muscle artifacts and instrumentation noise. Seventeen heart rate variability and morphological ECG features were extracted by convoluting peak detection with Gaussian distributions and delineating QRS complexes using discrete wavelet transforms. The decision tree classifier’s features, parameters, and hyperparameters were self-optimized through stratified triple nested cross-validation ranked on F1-scoring against cardiologist labeling. The selected model achieved a macro F1-score of 0.899 with 0.993 for NSR, 0.938 for AFIB, and 0.767 for AFL. The most important features included median P-wave amplitudes, PRR20, and mean heart rates. The ONNX-translated pipeline took 9.2 s/sample. This combination of our self-optimizing scheme and deployment use case of ONNX demonstrated overall accurate operational tachycardia detection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3