Abstract
AbstractThe experimental results of Xia and Steen for the contact line dynamics of a drop placed on a vertically oscillating surface are analyzed by numerical phase field simulations. The concept of contact line mobility or friction is discussed, and an angle-dependent model is formulated. The results of numerical simulations based on this model are compared to the detailed experimental results of Xia and Steen with good general agreement. The total energy input in terms of work done by the oscillating support, and the dissipation at the contact line, are calculated from the simulated results. It is found that the contact line dissipation is almost entirely responsible for the dissipation that sets the amplitude of the response. It is argued that angle-dependent line friction may be a fruitful interpretation of the relations between contact line speed and dynamic contact angle that are often used in practical computational fluid dynamics.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献