Abstract
AbstractStriatal dopamine drives associative learning by acting as a teaching signal. Much work has focused on simple learning paradigms, including Pavlovian and instrumental learning. However, higher cognition requires that animals generate internal concepts of their environment, where sensory stimuli, actions and outcomes become flexibly associated. Here, we performed fiber photometry dopamine measurements across the striatum of male mice as they learned cue–action–outcome associations based on implicit and changing task rules. Reinforcement learning models of the behavioral and dopamine data showed that rule changes lead to adjustments of learned cue–action–outcome associations. After rule changes, mice discarded learned associations and reset outcome expectations. Cue- and outcome-triggered dopamine signals became uncoupled and dependent on the adopted behavioral strategy. As mice learned the new association, coupling between cue- and outcome-triggered dopamine signals and task performance re-emerged. Our results suggest that dopaminergic reward prediction errors reflect an agent’s perceived locus of control.
Funder
Deutsche Forschungsgemeinschaft
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献