Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning

Author:

Celeste CameronORCID,Ming Dion,Broce Justin,Ojo Diandra P.,Drobina Emma,Louis-Jacques Adetola F.,Gilbert Juan E.,Fang RuoguORCID,Parker Ivana K.ORCID

Abstract

AbstractWhile machine learning (ML) has shown great promise in medical diagnostics, a major challenge is that ML models do not always perform equally well among ethnic groups. This is alarming for women’s health, as there are already existing health disparities that vary by ethnicity. Bacterial Vaginosis (BV) is a common vaginal syndrome among women of reproductive age and has clear diagnostic differences among ethnic groups. Here, we investigate the ability of four ML algorithms to diagnose BV. We determine the fairness in the prediction of asymptomatic BV using 16S rRNA sequencing data from Asian, Black, Hispanic, and white women. General purpose ML model performances vary based on ethnicity. When evaluating the metric of false positive or false negative rate, we find that models perform least effectively for Hispanic and Asian women. Models generally have the highest performance for white women and the lowest for Asian women. These findings demonstrate a need for improved methodologies to increase model fairness for predicting BV.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3