Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson’s disease

Author:

Brzenczek CyrilORCID,Klopfenstein Quentin,Hähnel TomORCID,Fröhlich HolgerORCID,Glaab EnricoORCID, ,Acharya Geeta,Aguayo Gloria,Alexandre Myriam,Ali Muhammad,Ammerlann Wim,Arena Giuseppe,Bassis Michele,Batutu Roxane,Beaumont Katy,Béchet Sibylle,Berchem Guy,Bisdorff Alexandre,Boussaad Ibrahim,Bouvier David,Castillo Lorieza,Contesotto Gessica,De Bremaeker Nancy,Dewitt Brian,Diederich Nico,Dondelinger Rene,Ramia Nancy E.,Ferrari Angelo,Frauenknecht Katrin,Fritz Joëlle,Gamio Carlos,Gantenbein Manon,Gawron Piotr,Georges Laura,Ghosh Soumyabrata,Giraitis Marijus,Glaab Enrico,Goergen Martine,Gómez De Lope Elisa,Graas Jérôme,Graziano Mariella,Groues Valentin,Grünewald Anne,Hammot Gaël,Hanff Anne-Marie,Hansen Linda,Heneka Michael,Henry Estelle,Henry Margaux,Herbrink Sylvia,Herzinger Sascha,Hundt Alexander,Jacoby Nadine,Jónsdóttir Sonja,Klucken Jochen,Kofanova Olga,Krüger Rejko,Lambert Pauline,Landoulsi Zied,Lentz Roseline,Lopes Ana Festas,Lorentz Victoria,Marques Tainá M.,Marques Guilherme,Martins Conde Patricia,May Patrick,Mcintyre Deborah,Mediouni Chouaib,Meisch Francoise,Mendibide Alexia,Menster Myriam,Minelli Maura,Mittelbronn Michel,Mtimet Saïda,Munsch Maeva,Nati Romain,Nehrbass Ulf,Nickels Sarah,Nicolai Beatrice,Nicolay Jean-Paul,Niño Uribe Maria Fernanda,Noor Fozia,Gomes Clarissa P. C.,Pachchek Sinthuja,Pauly Claire,Pauly Laure,Pavelka Lukas,Perquin Magali,Pexaras Achilleas,Rauschenberger Armin,Rawal Rajesh,Reddy Bobbili Dheeraj,Remark Lucie,Richard Ilsé,Roland Olivia,Roomp Kirsten,Rosales Eduardo,Sapienza Stefano,Satagopam Venkata,Schmitz Sabine,Schneider Reinhard,Schwamborn Jens,Severino Raquel,Sharify Amir,Soare Ruxandra,Soboleva Ekaterina,Sokolowska Kate,Theresine Maud,Thien Hermann,Thiry Elodie,Ting Jiin Loo Rebecca,Trouet Johanna,Tsurkalenko Olena,Vaillant Michel,Vega Carlos,Vilas Boas Liliana,Wilmes Paul,Wollscheid-Lengeling Evi,Zelimkhanov Gelani

Abstract

AbstractParkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.

Funder

Fonds National de la Recherche Luxembourg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3