Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson’s disease
-
Published:2024-09-06
Issue:1
Volume:7
Page:
-
ISSN:2398-6352
-
Container-title:npj Digital Medicine
-
language:en
-
Short-container-title:npj Digit. Med.
Author:
Brzenczek CyrilORCID, Klopfenstein Quentin, Hähnel TomORCID, Fröhlich HolgerORCID, Glaab EnricoORCID, , Acharya Geeta, Aguayo Gloria, Alexandre Myriam, Ali Muhammad, Ammerlann Wim, Arena Giuseppe, Bassis Michele, Batutu Roxane, Beaumont Katy, Béchet Sibylle, Berchem Guy, Bisdorff Alexandre, Boussaad Ibrahim, Bouvier David, Castillo Lorieza, Contesotto Gessica, De Bremaeker Nancy, Dewitt Brian, Diederich Nico, Dondelinger Rene, Ramia Nancy E., Ferrari Angelo, Frauenknecht Katrin, Fritz Joëlle, Gamio Carlos, Gantenbein Manon, Gawron Piotr, Georges Laura, Ghosh Soumyabrata, Giraitis Marijus, Glaab Enrico, Goergen Martine, Gómez De Lope Elisa, Graas Jérôme, Graziano Mariella, Groues Valentin, Grünewald Anne, Hammot Gaël, Hanff Anne-Marie, Hansen Linda, Heneka Michael, Henry Estelle, Henry Margaux, Herbrink Sylvia, Herzinger Sascha, Hundt Alexander, Jacoby Nadine, Jónsdóttir Sonja, Klucken Jochen, Kofanova Olga, Krüger Rejko, Lambert Pauline, Landoulsi Zied, Lentz Roseline, Lopes Ana Festas, Lorentz Victoria, Marques Tainá M., Marques Guilherme, Martins Conde Patricia, May Patrick, Mcintyre Deborah, Mediouni Chouaib, Meisch Francoise, Mendibide Alexia, Menster Myriam, Minelli Maura, Mittelbronn Michel, Mtimet Saïda, Munsch Maeva, Nati Romain, Nehrbass Ulf, Nickels Sarah, Nicolai Beatrice, Nicolay Jean-Paul, Niño Uribe Maria Fernanda, Noor Fozia, Gomes Clarissa P. C., Pachchek Sinthuja, Pauly Claire, Pauly Laure, Pavelka Lukas, Perquin Magali, Pexaras Achilleas, Rauschenberger Armin, Rawal Rajesh, Reddy Bobbili Dheeraj, Remark Lucie, Richard Ilsé, Roland Olivia, Roomp Kirsten, Rosales Eduardo, Sapienza Stefano, Satagopam Venkata, Schmitz Sabine, Schneider Reinhard, Schwamborn Jens, Severino Raquel, Sharify Amir, Soare Ruxandra, Soboleva Ekaterina, Sokolowska Kate, Theresine Maud, Thien Hermann, Thiry Elodie, Ting Jiin Loo Rebecca, Trouet Johanna, Tsurkalenko Olena, Vaillant Michel, Vega Carlos, Vilas Boas Liliana, Wilmes Paul, Wollscheid-Lengeling Evi, Zelimkhanov Gelani
Abstract
AbstractParkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.
Funder
Fonds National de la Recherche Luxembourg
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. Greenland, J. C., Williams-Gray, C. H. & Barker, R. A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur. J. Neurosci. 49, 328–338 (2019). 2. Foltynie, T., Brayne, C. & Barker, R. A. The heterogeneity of idiopathic Parkinson’s disease. J. Neurol. 249, 138–145 (2002). 3. Hähnel, T. et al. Progression subtypes in Parkinson’s disease identified by a data-driven multi cohort analysis. NPJ Parkinsons Dis. 10, 95 (2024). 4. Vasudevan, S., Saha, A., Tarver, M. E. & Patel, B. Digital biomarkers: convergence of digital health technologies and biomarkers. NPJ Digit Med. 5, 36 (2022). 5. Fröhlich, H. et al. Leveraging the potential of digital technology for better individualized treatment of Parkinson’s disease. Front. Neurol. 13, 788427 (2022).
|
|