AI-based analysis of CT images for rapid triage of COVID-19 patients

Author:

Xu QinmeiORCID,Zhan XianghaoORCID,Zhou Zhen,Li Yiheng,Xie Peiyi,Zhang Shu,Li Xiuli,Yu Yizhou,Zhou Changsheng,Zhang Longjiang,Gevaert OlivierORCID,Lu GuangmingORCID

Abstract

AbstractThe COVID-19 pandemic overwhelms the medical resources in the stressed intensive care unit (ICU) capacity and the shortage of mechanical ventilation (MV). We performed CT-based analysis combined with electronic health records and clinical laboratory results on Cohort 1 (n = 1662 from 17 hospitals) with prognostic estimation for the rapid stratification of PCR confirmed COVID-19 patients. These models, validated on Cohort 2 (n = 700) and Cohort 3 (n = 662) constructed from nine external hospitals, achieved satisfying performance for predicting ICU, MV, and death of COVID-19 patients (AUROC 0.916, 0.919, and 0.853), even on events happened two days later after admission (AUROC 0.919, 0.943, and 0.856). Both clinical and image features showed complementary roles in prediction and provided accurate estimates to the time of progression (p < 0.001). Our findings are valuable for optimizing the use of medical resources in the COVID-19 pandemic. The models are available here: https://github.com/terryli710/COVID_19_Rapid_Triage_Risk_Predictor.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Reference66 articles.

1. WHO. Weekly Epidemiological and Operational updates October. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf (2020).

2. Vincent, J. L. & Taccone, F. S. Understanding pathways to death in patients with COVID-19. Lancet Respir. Med. 8, 430–432 (2020).

3. Kissler, S. M., Tedijianto, C., Goldstein, E., Yonatan, H. G. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860–868 (2020).

4. Harvard Business Review. We need to relocate ICU patients out of Covid-19 hotspots. https://hbr.org/2020/06/we-need-to-relocate-icu-patients-out-of-covid-19-hotspots (2020).

5. BBC News. Coronavirus: thousands of extra hospital beds and staff. https://www.bbc.com/news/uk-51989183 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3