Biometrics of complete human pregnancy recorded by wearable devices

Author:

Keeler Bruce Lauryn,González DalilaORCID,Dasgupta SubhasisORCID,Smarr Benjamin L.

Abstract

AbstractIn the United States, normal-risk pregnancies are monitored with the recommended average of 14 prenatal visits. Check-ins every few weeks are the standard of care. This low time resolution and reliance on subjective feedback instead of direct physiological measurement, could be augmented by remote monitoring. To date, continuous physiological measurements have not been characterized across all of pregnancy, so there is little basis of comparison to support the development of the specific monitoring capabilities. Wearables have been shown to enable the detection and prediction of acute illness, often faster than subjective symptom reporting. Wearables have also been used for years to monitor chronic conditions, such as continuous glucose monitors. Here we perform a retrospective analysis on multimodal wearable device data (Oura Ring) generated across pregnancy within 120 individuals. These data reveal clear trajectories of pregnancy from cycling to conception through postpartum recovery. We assessed individuals in whom pregnancy did not progress past the first trimester, and found associated deviations, corroborating that continuous monitoring adds new information that could support decision-making even in the early stages of pregnancy. By contrast, we did not find significant deviations between full-term pregnancies of people younger than 35 and of people with “advanced maternal age”, suggesting that analysis of continuous data within individuals can augment risk assessment beyond standard population comparisons. Our findings demonstrate that low-cost, high-resolution monitoring at all stages of pregnancy in real-world settings is feasible and that many studies into specific demographics, risks, etc., could be carried out using this newer technology.

Funder

U.S. Department of Health & Human Services | NIH | U.S. National Library of Medicine

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3