Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Author:

Sieberts Solveig K.ORCID, ,Schaff Jennifer,Duda Marlena,Pataki Bálint Ármin,Sun Ming,Snyder PhilORCID,Daneault Jean-Francois,Parisi Federico,Costante Gianluca,Rubin Udi,Banda Peter,Chae Yooree,Chaibub Neto Elias,Dorsey E. Ray,Aydın Zafer,Chen Aipeng,Elo Laura L.ORCID,Espino Carlos,Glaab EnricoORCID,Goan Ethan,Golabchi Fatemeh Noushin,Görmez Yasin,Jaakkola Maria K.,Jonnagaddala JitendraORCID,Klén Riku,Li Dongmei,McDaniel Christian,Perrin DimitriORCID,Perumal Thanneer M.,Rad Nastaran Mohammadian,Rainaldi ErinORCID,Sapienza Stefano,Schwab Patrick,Shokhirev Nikolai,Venäläinen Mikko S.ORCID,Vergara-Diaz Gloria,Zhang YuqianORCID,Wang Yuanjia,Guan YuanfangORCID,Brunner Daniela,Bonato PaoloORCID,Mangravite Lara M.ORCID,Omberg LarssonORCID

Abstract

AbstractConsumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3