Abstract
AbstractPeople living with type 1 diabetes (T1D) require lifelong self-management to maintain glucose levels in a safe range. Failure to do so can lead to adverse glycemic events with short and long-term complications. Continuous glucose monitoring (CGM) is widely used in T1D self-management for real-time glucose measurements, while smartphone apps are adopted as basic electronic diaries, data visualization tools, and simple decision support tools for insulin dosing. Applying a mixed effects logistic regression analysis to the outcomes of a six-week longitudinal study in 12 T1D adults using CGM and a clinically validated wearable sensor wristband (NCT ID: NCT03643692), we identified several significant associations between physiological measurements and hypo- and hyperglycemic events measured an hour later. We proceeded to develop a new smartphone-based platform, ARISES (Adaptive, Real-time, and Intelligent System to Enhance Self-care), with an embedded deep learning algorithm utilizing multi-modal data from CGM, daily entries of meal and bolus insulin, and the sensor wristband to predict glucose levels and hypo- and hyperglycemia. For a 60-minute prediction horizon, the proposed algorithm achieved the average root mean square error (RMSE) of 35.28 ± 5.77 mg/dL with the Matthews correlation coefficients for detecting hypoglycemia and hyperglycemia of 0.56 ± 0.07 and 0.70 ± 0.05, respectively. The use of wristband data significantly reduced the RMSE by 2.25 mg/dL (p < 0.01). The well-trained model is implemented on the ARISES app to provide real-time decision support. These results indicate that the ARISES has great potential to mitigate the risk of severe complications and enhance self-management for people with T1D.
Funder
RCUK | Engineering and Physical Sciences Research Council
President’s PhD Scholarship at Imperial College London
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献