Abstract
AbstractTechnology assistance of pharmacist verification tasks through the use of machine intelligence has the potential to detect dangerous and costly pharmacy dispensing errors. National Drug Codes (NDC) are unique numeric identifiers of prescription drug products for the United States Food and Drug Administration. The physical form of the medication, often tablets and capsules, captures the unique features of the NDC product to help ensure patients receive the same medication product inside their prescription bottle as is found on the label from a pharmacy. We report and evaluate using an automated check to predict the shape, color, and NDC for images showing a pile of pills inside a prescription bottle. In a test set containing 65,274 images of 345 NDC classes, overall macro-average precision was 98.5%. Patterns of incorrect NDC predictions based on similar colors, shapes, and imprints of pills were identified and recommendations to improve the model are provided.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献