Wearable sensor-based quantitative gait analysis in Parkinson’s disease patients with different motor subtypes

Author:

Zhang WeishanORCID,Ling Yun,Chen ZhonglueORCID,Ren KangORCID,Chen ShengdiORCID,Huang PeiORCID,Tan YuyanORCID

Abstract

AbstractGait impairments are among the most common and disabling symptoms of Parkinson’s disease and worsen as the disease progresses. Early detection and diagnosis of subtype-specific gait deficits, as well as progression monitoring, can help to implement effective and preventive personalized treatment for PD patients. Yet, the gait features have not been fully studied in PD and its motor subtypes. To characterize comprehensive and objective gait alterations and to identify the potential gait biomarkers for early diagnosis, subtype differentiation, and disease severity monitoring. We analyzed gait parameters related to upper/lower limbs, trunk and lumbar, and postural transitions from 24 tremor-dominant (TD) and 20 postural instability gait difficulty (PIGD) dominant PD patients who were in early stage and 39 matched healthy controls (HC) during the Timed Up and Go test using wearable sensors. Results show: (1) Both TD and PIGD groups showed restricted backswing range in bilateral lower extremities and more affected side (MAS) arm, reduced trunk and lumbar rotation range in the coronal plane, and low turning efficiency. The receiver operating characteristic (ROC) analysis revealed these objective gait features had high discriminative value in distinguishing both PD subtypes from the HC with the area under the curve (AUC) values of 0.7~0.9 (p < 0.01). (2) Subtle but measurable gait differences existed between TD and PIGD patients before the onset of clinically apparent gait impairment. (3) Specific gait parameters were significantly associated with disease severity in TD and PIGD subtypes. Objective gait biomarkers based on wearable sensors may facilitate timely and personalized gait treatments in PD subtypes through early diagnosis, subtype differentiation, and disease severity monitoring.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3