Efficiently measuring a quantum device using machine learning

Author:

Lennon D. T.ORCID,Moon H.,Camenzind L. C.,Yu Liuqi,Zumbühl D. M.,Briggs G. A .D.ORCID,Osborne M. A.,Laird E. A.ORCID,Ares N.ORCID

Abstract

Abstract Scalable quantum technologies such as quantum computers will require very large numbers of quantum devices to be characterised and tuned. As the number of devices on chip increases, this task becomes ever more time-consuming, and will be intractable on a large scale without efficient automation. We present measurements on a quantum dot device performed by a machine learning algorithm in real time. The algorithm selects the most informative measurements to perform next by combining information theory with a probabilistic deep-generative model that can generate full-resolution reconstructions from scattered partial measurements. We demonstrate, for two different current map configurations that the algorithm outperforms standard grid scan techniques, reducing the number of measurements required by up to 4 times and the measurement time by 3.7 times. Our contribution goes beyond the use of machine learning for data search and analysis, and instead demonstrates the use of algorithms to automate measurements. This works lays the foundation for learning-based automated measurement of quantum devices.

Funder

University of Basel | Swiss Nanoscience Institute

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3