Abstract
AbstractThe preparation of thermal equilibrium states is important for the simulation of condensed matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment.
Funder
ODNI | Intelligence Advanced Research Projects Activity
Intel Corporation
European Research Council (ERC) Synergy grant
ERC Synergy grant
Netherlands Organization for Applied Scientific Research
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献